KUKíci - NANOVánoce
NANOVÁNOCE plakát.doc (133120)
Nanotechnologie
Jako nanotechnologie se obecně označuje technický o bor, který se zabývá tvorbou a využíváním technologií v měřítku řádově nanometrů (obvykle cca 1–100 nm), tzn. 10−9 m (miliardtiny metru), což je přibližně tisícina tloušťky lidského vlasu. Jedná se rovněž o studium možnosti manipulace se hmotou v atomárním a molekulárním měřítku, přičemž se uplatňují kvantově-mechanické jevy, které se diametrálně vymykají chápání světa viditelného pouhým okem. Díky těmto jevům, které popisuje kvantová fyzika, se otevírají nové perspektivy v oblasti magnetických záznamových mediích, výpočetní technice, elektronice, optice a dalších vědních oblastech.
Nanostruktury, tzn. oblast částic a struktur o rozměrech mezi 1 nm až 100 nm, považujeme za základní stavební jednotky nanomateriálů. Zkoumáním jejich vlastností se pak zabývá nanověda. Její hranice se však nedá zcela přesně vymezit. Zahrnuje oblasti fyziky pevných látek, chemie, inženýrství i molekulární biologie. Nanotechnologie bychom potom mohli definovat jako interdisciplinární a průřezové technologie, zabývající se praktickým využitím nových a neobvyklých vlastností nanomateriálů pro konstrukci nových struktur, materiálů a zařízení.
Jako jeden ze zakladatelů nanotechnologie (třebaže ještě nepoužil toho slova) je označován Richard Feynman, který základní myšlenky představil ve své slavné přednášce nazvané Tam dole je spousta místa (There's Plenty of Room at the Bottom), kterou v roce 1959 přednesl na výroční schůzi Americké společnosti fyziků pořádané na Caltechu.
Využití nanotechnologií a nanomateriálů je velmi rozsáhlé. Již v současnosti nalézají uplatnění v mnoha oblastech běžného života jako je elektronika (paměťová média, spintronika, bioelektronika, kvantová elektronika), zdravotnictví (cílená doprava léčiv), strojírenství (supertvrdé povrchy s nízkým třením, samočisticí nepoškrabatelné laky), chemický průmysl (nanotrubice, nanokompozity, selektivní katalýza, aerogely), elektrotechnický průmysl (vysokokapacitní záznamová média, fotomateriály, palivové články), optický průmysl (optické filtry, fotonické krystaly a fotonická vlákna, integrovaná optika), automobilový průmysl, kosmický průmysl (katalyzátory, odolné povrchy satelitů), vojenský průmysl (nanosenzory, konstrukční prvky raketoplánů), životní prostředí (biodegradace).
Nanotechnologie v medicíně
Tento typ nanotechnologií je zatím ve fázi úvah a testování. Uvažuje se o několika různých technologiích. Jednou z nich je použití materiálů se speciální strukturou na nanoskopické úrovni. Lehce odbouratelné nanoobaly by dokázaly vyhledat buňku, vstoupit dovnitř, uvolnit ze sebe lék a nechat se odbourat buňkou. Další technologie by bylo možné považovat už za skutečné nanostroje, a vytvořily by tunely skrz buněčnou stěnu a cytoplazmatickou membránu, které by umožňovaly průstup pouze specifickým látkám, tzn. že stejná látka vyskytující se přirozeně v organismu by neprošla, ale látka stejná a pouze speciálně označená by se bez problémů dostala dovnitř. Tyto tunely by regulovaly i množství a rychlost průchodu látek.
Dalším možným uplatněním nanotechnologií je použití nanovláken v tkáňovém inženýrství. Spleť nanovláken má při malém objemu velký povrch a tak může představovat vhodné lešení (matrix, angl. scaffold), na kterém se uchytí ex vivo kultivované buňky náhradní tkáně. Pokud je navíc materiál nanovláken odbouratelný organizmem, lze očekávat, že bude postupně nahrazený vlastní extracelulární matrix. Zkouší se náhrady kostní tkáně, kloubních chrupavek, šlach, svalů, kůže a dokonce i nervové tkáně.[3]
Mezi nanotechnologie využité v medicíně bude ale možné zařadit i nanotechnologické stroje (či nanoroboti) využívající i jiné než biochemické principy, pokud budou použity například v rámci diagnostiky nebo chirurgického zásahu.